Ganeet House.
  Trigonometry
 
v     The angles of a triangle a

v     The angles of a triangle are in A.P. and the least angle is 300. The greatest angle in radians is

[ p/2 radians                                                  [ p/3 radians

            [ p/4 radians                                                  [ p radians

 

v     If sin A = cos A, 00 < A < 900, then A is equal to

[ 150                                                              [ 300

            [ 450                                                              [ 600

 

v     tan 750 – cot 750 is equal to

[ 4                                                                  [ 2 + Ö3

            [ 2 - Ö3                                                          [ 2Ö3

 

v     If sin A + cos A = 1, then sin 2A is equal to

[ 1                                                                  [ 2

            [ 0                                                                  [ ½

 

v     sin 2000 + cos 2000 is

[ negative                                                       [ positive

            [ zero                                                             [ zero or positive

 

v     If ABCD is a cyclic quadrilateral, then

[ sin (A + C) = 1                                            [ sin (B + D) = 1

            [ cos (A + C) = 1                                           [ cos (A + C) = -1

 

v     If sin x + cos x = a then the value of |sin x – cos x| is

[ Ö(2 – a2)                                                      [ Ö(2 + a2)

            [ Ö(a2 - 2)                                                      [ none of these

 

v     In a triangle ABC, cosec A (sin B cos C + cos B sin C) is equal to

[ c/a                                                               [ a/c

            [ 1                                                                  [ none of these

 

v     If cos (a + b) = 0, then sin (a + 2b) is equal to

[ - sin a                                                          [ cos a

            [ sin b                                                    [ cos b

 

v     The roots of the equation 4 x2 - 2Ö5 x + 1= 0 are

[ sin 360, sin 180                                             [ sin 180, sin 360

            [ sin 360, cos 180                                            [ cos 360, cos 180

 

v     For non-zero real numbers x and y the equality (x +  y)2 sec2 q = 4 xy is possible only when

[ x + y = 1                                                      [ x + y = -1

            [ x - y = 0                                                      [ x + y = 0

 

v     If a is any real number, then the number of roots of cot x – tan x = a in the first quadrant are

[ 2                                                                  [ 0

            [ 1                                                                  [ none of these

 

v     If sin (300 - q) = cos (600 + f), then

[ f - q = 300                                                  [ f - q = 0

            [ f + q = 600                                                  [ f - q = 600

 

v     The least value of 2 sin2q + 3 cos2q is

[ 1                                                                  [ 2

            [ 3                                                                  [ 5

 

v     If tan q + sec q = Ö3, 0<q<p, then q is equal to

[ 5p/6                                                            [ 2p/3

            [ p/6                                                              [ p/3

 

v     If tan A + cot A = 4, then tan4q + cot4q is equal to

[ 110                                                              [ 191

            [ 80                                                                [ 194

            [ 195

 

v     If tan A = ½ and tan B = 1/3, then the value of A + B is                       

[ p/4                                                              [ 0

            [ p                                                                 [ p/3

 

v     If sin q - cos q = 0 and 0<q£p/2, then q is equal to

[ p/2                                                              [ p/4

            [ p/6                                                              [ 0

 

v     The number of values of x in the interval [0, 5p] satisfying the equation 3 sin2x – 7 sinx + 2 = 0

[ 0                                                                  [ 5

            [ 6                                                                  [ 10

 

v     The number of all possible triplets (a1, a2, a3) such that a1 + a2 cos 2x + a3 sin2x = 0 for all x is

[ 0                                                                  [ 1

            [ 2                                                                  [ infinite

 

v     The smallest positive root of the equation tanx – x = 0 lies on

[ (0, p/2)                                                        [ (p/2, p)

            [ (p, 3p/2)                                                     [ (3p/2, 2p)

 

v     The equation 3 cos x + 4 sin x = 6 has ______ solution

[ finite                                                   [ infinite

            [ no                                                                [ one

 

v     The number of solutions in 0£x£p/2, of the equation cos 3x tan 5x = sin 7x is

[ 7                                                                  [ 6

            [ 5                                                                  [ none of these

 

v     The number of points of intersection of the two curves y = 2 sin x and y = 5x2 + 2x + 3 is

[ 0                                                                  [ 1

            [ 2                                                                  [ ¥

 

v     The range of y such that the equation in x, y + cos x = sin x has a real solution is

[ [-2, 2]                                                          [ [-Ö2, Ö2]

            [ [-1, 1]                                                          [ [-1/2, 1/2]

 

v     Solution of the equation sin x – cos x = Ö 2 is

[ 2np +3p/4                                                   [ 2np

            [ np                                                               [ (2n + 1)p, nÎZ

 

v     Cos-1(cosx)=x is satisfied by

[ xÎR                                                    [ xÎ[0, 1]

            [ xÎ[-1, 1]                                                    [ none of these

v     Let f(x) = sec-1x + tan-1x, then f(x) is real for

[ xÎ[-1, 1]                                                     [ xÎR

            [ xÎ(-¥, -1) È (1, ¥)                            [ none of these

 

v     Principal value of sin-1(sin 2p/3) is equal to

[ -2p/3                                                           [ 2p/3

            [ 4p/3                                                             [ p/3

v     If tan-12, tan-13 are two angles of a triangle, then the third angle is

[ p/4                                                              [ 3p/4

            [ p/2                                                              [ none of these

 

v     The value of tan2(sec-12) + cot2(cosec-13) is

[ 13                                                                [ 15

            [ 11                                                                [ none of these

 

v     If sin-1x – cos-1x = p/6, then x is

[ ½                                                                 [ Ö3/2

            [ -1/2                                                             [ none of these

 

v     If cos-1x > sin-1x, then

[ x < 0                                                            [ -1 < x < 1

            [ 0£ x <1/Ö2                                                  [ -1 £ x £ 1/Ö2

 

v     Sin(cot-1(tan cos-1x)) is equal to

[ x                                                                  [ Ö(1 – x2)

            [ 1/x                                                               [ none of these

 

v     The value of cot-13 + cosec-1Ö5 is

[ p/3                                                              [ p/2

            [ p/4                                                              [ none of these

v     Sin{sin-1(1/2) – cos-1(1/2)} equals

[ 0                                                                  [ 1

            [ ½                                                                 [ 1/Ö2

 

v     Considering only the principal values, if tan(cos-1x) = sin (cot-11/2), then x equals

[ 1/Ö5                                                                        [ 2/Ö5

            [3/Ö5                                                             [ Ö5/3

 

v     If sec-1(1/x) + 2 sin-1(1) = p, then x equals

[ ½                                                                 [ 1

            [ p/2                                                              [ none of these

 

v     If sin-1x = p/5, then cos-1x equals

[ p/10                                                            [ 3p/10

            [ 5p/4                                                            [ 7p/4

 

v     If x = sin-1K, y = cos-1K, -1£ K £1, then the correct relationship is

[ x + y = 2                                                      [ x - y = 2

            [ x + y = p/2                                                  [ x - y = p/2

 

v     If tan-1(x + 1) + tan-1(x - 1) = tan-1(8/31), then x =

[ 1                                                                  [ ½                            

            [ -1/2                                                             [ ¼

 

v     tan-13 + tan-1 x = tan-18, then x =

[ 5                                                                  [ 1/5

            [ 5/14                                                             [ 14/5

 

v     If cosh-1x = log(2+Ö3), then x =

[ 2                                                                  [ 1

            [ 3                                                                  [ 5

 

v     The domain of sin-1x is

[ (-p, p)                                                         [ [-1 1]

            [ (0, 2p)                                                         [ (-¥, ¥)

 

v     If sin(sin-11/5 + cos-1x) = 1, then x is equal to

[ 1                                                                  [ 0

            [ 4/5                                                               [ 1/5

 

v     If sin-1x + cot-11/2 = p/2, then x is equal to

[ 0                                                                  [ 1/Ö5

            [ 2/Ö5                                                                        [ Ö3/2

 

v     The sum of first 50 terms of the series cot-13 + cot-17 + cot-113 + cot-121 + …. is

[ tan-1(5/6)                                                      [ tan-1(1000)

            [ tan-1(6/5)                                                      [ tan-1(1/100)

 

v     A solution of the equation tan-1(x + 1) + tan-1(x - 1) = p/2 is

[ x = 1                                                            [ x = -1

            [ x = 0                                                            [ x = p

 

v     The value of cos(2 cos-1x + sin-1x) at x = 1/5 is

[ Ö6/5                                                                        [ -2Ö6/5

            [ 2/5                                                               [ 2Ö6

 

v     The greater of the two angles A = 2 tan-1(2Ö2 - 1) and B = 3 sin-1(1/3) + sin-1(3/5) is

[ B                                                                 [ A

            [ C                                                                 [ none of these

 

v     If tan-1 x + tan-1 y + tan-1 z = p, then x + y + z is equal to

[ xyz                                                               [ 0

            [ 1                                                                  [ 2xyz

[ x2 + y2 + z2

 

v     If 4 cos-1x + sin-1x = p, then the value of x is

[ ½                                                                 [ 1/Ö2

            [ Ö3/2                                                                        [ 2/Ö3

            [ 3/2

 

v     Sec2(tan-1 2) + cosec2(cot-1 3) =

[ 5                                                                  [ 10

            [ 15                                                                [ 20

 

v     If cos-1[Öp + cos-1Ö(1 - p) + cos-1Ö(1 - q) = 3p/4, then the value of q is

[ 1/Ö2                                                                        [ 1

            [1/2                                                                [ 1/3

 
 
  Today, there have been 143455 visitors (401217 hits) on this page! CONGRATULATION  
 
This website was created for free with Own-Free-Website.com. Would you also like to have your own website?
Sign up for free